Can Shallow Predicate Argument Structures Determine Entailment?

نویسندگان

  • Alina Andreevskaia
  • Zhuoyan Li
چکیده

The CLaC Lab’s system for the PASCAL RTE challenge explores the potential of simple general heuristics and a knowledge-poor approach for recognising paraphrases, using NP coreference, NP chunking, and two parsers (RASP and Link) to produce Predicate Argument Structures (PAS) for each of the pair components. WordNet lexical chains and a few specialised heuristics are used to establish semantic similarity between corresponding components of the PAS from the pair. We discuss the results and potential of this approach.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling textual entailment with role semantic information

In this thesis, we present a novel approach for modeling textual entailment using lexicalsemantic information on the level of predicate-argument structure. To this end, we adopt information provided by the Berkeley FrameNet repository and embed it into an implemented end-to-end system. The two main goals of this thesis are the following: (i) to provide an analysis of the potential contribution ...

متن کامل

Acquiring Reliable Predicate-argument Structures from Raw Corpora for Case Frame Compilation

We present a method for acquiring reliable predicate-argument structures from raw corpora for automatic compilation of case frames. Such lexicon compilation requires highly reliable predicate-argument structures to practically contribute to Natural Language Processing (NLP) applications, such as paraphrasing, text entailment, and machine translation. We first apply chunking to raw corpora and t...

متن کامل

IKOMA at TAC2011: A Method for Recognizing Textual Entailment using Lexical-level and Sentence Structure-level features

This paper describes the Recognizing Textual Entailment (RTE) system that our teams developed for TAC 2011. Our system combines the entailment score calculated by lexicallevel matching with the machine-learningbased filtering mechanism using various features obtained from lexical-level, chunk-level and predicate argument structure-level information. In the filtering mechanism, we try to discard...

متن کامل

Recognizing Textual Relatedness with Predicate-Argument Structures

In this paper, we first compare several strategies to handle the newly proposed three-way Recognizing Textual Entailment (RTE) task. Then we define a new measurement for a pair of texts, called Textual Relatedness, which is a weaker concept than semantic similarity or paraphrase. We show that an alignment model based on the predicate-argument structures using this measurement can help an RTE sy...

متن کامل

برچسب‌زنی نقش معنایی جملات فارسی با رویکرد یادگیری مبتنی بر حافظه

Abstract Extracting semantic roles is one of the major steps in representing text meaning. It refers to finding the semantic relations between a predicate and syntactic constituents in a sentence. In this paper we present a semantic role labeling system for Persian, using memory-based learning model and standard features. Our proposed system implements a two-phase architecture to first identify...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005